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ABSTRACT
Experi nentwi se error rates can rapidly inflate when
researchers use nultiple univariate tests. Both (a) ANOVA post
hoc and (b) nultivariate nethods incorporate a correction for
experimentw se error. Researchers ought to understand
experimentwi se error if they are to understand (a) what post hoc
test really do and (b) an inportant rationale for multivariate

met hods.
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A REVI EW OF EXPERI MENTW SE TYPE | ERROR

I MPLI CATI ONS FOR UNI VARI ATE POST HOC AND FOR MJTI VARI ATE TESTI NG

Researchers are wary of making a Type | error. |In order to
guard agai nst doing that, researchers set alpha to be small
However, sone researchers, focus only on “testw se” al pha, and
are unaware of the “experinmentw se” al pha and the iinportance of
not inflating “experinmentwi se” Type | error rates. This paper
reviews experinentwi se Type | error. The concept is
fundanental ly inportant in two respects. First, ANOVA post hoc
tests inplicitly incorporate a correction for experientnw se
error; if this correction is not understood, the researcher does
not understand post hoc tests thenselves. Second, experinentw se
error concerns are one reason why nultivariate tests are al nost
al ways vital in educational research (Fish, 1988; Thonpson
1999), so researchers ought to understand experinentw se error if
they are to understand an inportant rationale for multivariate
met hods.

Experi nentw se Error

Resear chers are cogni zant of the possibility of rejecting a

null hypothesis (Hg even when the Hois true. This is called a

"testwise" Type | error. Researchers set an alpha (a) level a

priori at a small near-zero value to protect against testw se

Type | errors. |If the alpha level is set at .01 of statistical
significance, one percent of the time the null will be falsely
rejected. In this case, the null is rejected even though the

null may be true in the popul ation.
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Most researchers are famliar with "testw se" al pha (amy.

However, while "testw se" alpha refers to the probability of

making a Type | error for a given hypothesis test,

"experinmentw se" (or "famlyw se" -- see Maxwell, 1992, p. 138)
error rate refers to the probability of having made a Type |

error anywhere within a set of hypothesis tests (Thonpson, 1994).

"Experinmentwi se" error rate inflates when a nunber of hypot heses
are tested (e.g., two or nore dependent variables) at the sane
al pha level within a given study (Love, 1988).

"Experinmentwi se" error rate equals "testw se" error rate
when only one hypothesis is tested for a given group of people in
a study. However, when nore than one hypothesis is being tested
in a given study with only one sanple, the two error rates nay
not be equal (Thonpson, 1994). This occurs as Type | errors from
each individual tested hypothesis build off each other, causing a
highly inflated experinmentw se error rate. Huberty and Morris
(1989, p. 306) referred to this as "probability pyramding."

G ven the nunber of hypotheses being tested, the inflation of
experimentwi se error rates can be quite serious, as enphasi zed by
Morrow and Frankiew cz (1979).

Experi nentwi se and testwi se error rates are equal given the
presence of nmultiple hypothesis tests (e.g., two or nore
dependent variables) in a single sanple study only if the
hypot heses (or the dependent variables) are perfectly correl ated
(or independent). This is so by reason that, for exanple, when
one has perfectly correl ated hypot heses, one actually is still

only testing a single hypothesis. Therefore, it can be said that



Experi nentwi se Error 5

two factors effect the inflation of experinmentwi se Type | error:
(a) the nunber of hypotheses tested using a single sanple of
data, and (b) the degree of correlation anong the dependent

vari abl es or the hypotheses tested (Thonpson, 1994).

Bonferroni Formula for ag,

"Experinmentwi se" error rate inflation is at its maxi num when
mul ti pl e dependent variables (e.g., nmultiple hypothesis tests) in
a single sanple study are perfectly uncorrelated (Fish, 1988).
When this occurs, the experinentw se error (agy rate can be
calculated. This is done using what is called the Bonferroni
i nequal ity (Love, 1988):

agy = 1 - U.-awﬁ
where k is the nunber of perfectly uncorrel ated hypot heses or
vari abl esbeing tested at a given testw se al pha level (atw.

For example, if four perfectly uncorrel ated hypot heses (or

dependent variables) are tested using data froma single sanple,

each at the arw= .01 level of statistical significance, the

experimentwi se Type | error rate will be:
K

agy = 1 - (1 - ag)
=1-(1- .01);1
=1-( .99
=1 - (.99(.99)(.99)(.99))
=1 - . 960596

ag, = .039404.

Thus, for a study testing four perfectly uncorrel ated

dependent variables, each at the arw= .01 level of statistical

significance, the probability is .039404 (or 3.9404% that one or

nore null hypotheses will be incorrectly rejected within the
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study. However, knowing this will not informthe researcher as
to which one or nore of the statistically significant hypotheses

is a Type | error. Table 1 provides an illustration of these

calculations for several a,,levels. This table also illustrates

how qui ckly a_, can becone infl ated.

Wtte (1985) explains the two error rates using an
intuitively appealing exanple involving a coin toss. |If the toss

of heads is equated with a Type | error, and if a coin is tossed

only once, then the probability of a head on the one toss (a,),

and of at |east one head within a set (a_) consisting of one

toss, will both equal 50%

If the coin is tossed three tines, the "testw se"
probability of a head on each toss is still 50% i.e., ayw= .50
(not .05). The Bonferroni inequality is a literal fit to this
exanpl e situation (i.e., that is, a literal analogy), because the
coin's behavior on each flip is literally uncorrelated with the
coin's behavior on previous flips. |In other words, the coin does
not alter its behavior on any given flip as a result of its
behavi or on any previous flip.

Thus, the "experinmentw se" probability (ag) that there wll
be at | east one head in the whole set of three flips will be

exactly:

agy = 1 - U.-aMK
1-(1- .50°

1 50 )°

1 - (.50(.50)(.50))
1 - . 2500 (. 50))
1

8

NN AN /N

- . 125000
75000.
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Table 2 illustrates these concepts nore concretely. 1In the
table are listed eight equally likely outcones for sets of three
coin flips. O the eight sets of three flips, seven involve one
or nore Type | error, defined in this exanple as a heads.
According to the Bonferroni inequality, 7/8 equals .875000, as
expect ed.

As stated earlier, the above exanple is a literal fit for
the Bonferroni inequality because the behavior of the coin on a
given flip is uncorrelated with the behavior of the coin on any
other flip. The exact ag, can be determ ned using the Bonferroni
inequality formula if the hypotheses or variables are perfectly
uncorrelated. This fornula is not necessary when the hypot heses
are perfectly correl ated because the agy and the amy equal each
ot her.

However, in nost studies hypotheses are neither perfectly
uncorrel ated nor perfectly correlated, and rather are partially
correlated. For such studies, the actual experinentw se error
rate will range somewhere between the conputed experinentw se
error rate (see above) and the testwi se error rate, but may never
really be known (Fish, 1988; Love, 1988; Mrrorw & Frankiew cz,
1979).

Al so, the agwinflation can be quite severe given the nunber
of hypot heses tested and the | evel of correlation. Therefore,
the power to reject can be low (A ejnik, Li, Supattathum &
Huberty, 1997). In other words, with nultiple univariate follow
up tests at the original arwlevel (e.g., .05), the agyis

inflated to statistical significance even if no statistical
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significance is found anywhere in the study. 1In order to
conmpensate for this, researchers apply a "correction.” This is
called the "Bonferroni correction."

Bonferroni Correction

The Bonferroni correction conpensates for the inflation by

dividing the original atwby the nunber of k hypotheses in the

study vyielding a new amyw(Maxwel |, 1992; Thonpson, 1994):

rw

an,, = k
Each i ndi vidual post hoc test then utilizes the atyw in order to
mai ntain the agyat an appropriate level. Table 3 illustrates
how t he Bonferroni correction is utilized in order to maintain
the agywat an appropriate level. However, this table also
illustrates how the use of the Bonferroni correction has the
potential for severe loss in power (Aejnik, Li, Supattathum &
Huberty, 1997).

Post Hoc Anal ysis

After wusing an ANOVA omibus test to analyze overall
differences in a nulti-group study with nore than two groups,
many researchers use “post hoc” (also called “a posteriori,”

“unpl anned,” or “unfocused”) tests to determ ne which group neans

differ for each set of pairs or conbinations of groups. All
conparisons/contrasts only test whether exactly two neans are
equal . There are two kinds of conparisons: sinple and conpl ex.

Al though all contrasts test the equality of exactly two neans,
sinple and conplex contrasts differ as regards the permssible

ways in which the two neans are created. Put sinply, "sinple"
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contrasts conpare the dependent variable neans of two groups
using the existing levels of a way, wthout any conbinations of
any levels. "Conplex" contrasts, on the other hand, include all
possible "sinple" contrasts, but also include neans conputed by
aggregating data across |levels of the way.

For exanple, let's presune that a researcher did a one-way
three-l1evel ANOVA in which there were 10 people in each of the
three groups of car owners: (a) Ford, (b) N ssan and (c) Rolls
Royce. The dependent variable mght be satisfaction with one's
car. For this design three "sinple" contrasts of nean |evels of
satisfaction are possible:

Moo (N = 10) = Myssav (N = 10);
Moo (N = 10) = Mas (n = 10); and
Missan (N = 10) = Meouws (0 = 10).
The "conpl ex" contrasts include these sinple contrasts, plus

the followi ng three "uniquely conpl ex" contrasts:

Moo (N = 10) = Missanvor ras (N = 20);
Missan (N = 10) = Moo or rats (N = 20); and
Meats (N = 10) = Mooor nssav (N = 20).
Table 4 illustrates these combinations for both three- and four-

| evel one-way ANOVA problens. As Table 4 nmakes clear, as the
nunber of levels gets larger, the nunber of sinple contrasts gets

| arger, but the nunber of conplex contrasts gets exponentially

| ar ger.
For each conparison, sinple or conplex, there are specific
post hoc tests used. For sinple conparisons the Tukey nethod,

also called the HSD (honestly significant difference) test, is
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often used. For conplex conparisons the Scheffé method is often
used (Hinkle, Wersman, & Jurs, 1998). Each of these nethod

utilizes an analogue to the Bonferroni correction in order to

mai ntain the agyat the a priori a |evel.

Tukey

The Tukey nmethod is |ikely the nost recommended and used
procedure for controlling Type |I error when naking sinple
conpari sons. The original Tukey nethod is based on Studentized
range statistics, which takes into account the nunber of neans
bei ng conpared, adjusting for the total nunber of tests to nake
all sinple conparisons. Later revisions of the Tukey nethod have
denonstrated its robustness to violations of nornality and
honogeneity assunptions (Barnette, 1998). The Tukey nethod is
also relatively insensitive to skewness. The Tukey nethod is not
af fected too much by many varied conditions. The exception to
that is with the variability of the popul ati on neans. Kesel nan
(1976) found that the Tukey method is nore powerful for the
maxi num variability of the population neans. This is |ogical
gi ven that under this condition the magnitude of sinple
conparisons is largest. However, with |arger sanple sizes, the
Tukey tends to |l ose rel ative power.

Scheffé

The Scheffé method is designed to analyze all possible
conpari sons (Sato, 1996). Therefore, the Scheffé nethod is used
for conplex or nmultiple conparisons. The Scheffé's infinite

intersectional nature is its greatest strength and its greatest
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weakness. It is strong because it can anal yze all possible
compari sons. Klockars and Hancock (1998), however, assert that
researchers are not always interested in many of the conparisons
Scheffé nakes. Because it is designed to test so many nultiple
conpari sons, the Scheffé nethod is extrenely conservative. The
Scheffé nethods suffers | oss of power for sone researchers
because it is so conservative (Sato, 1996).

Mul tivari ate Met hods

Mul tivariate nethods are designed for nultiple outcomne
vari ables. As Huberty and Morris (1989) noted, nultivariate
met hods ask, "Are there any overall effects present?' This
guestioning, or this philosophy, best honors the reality from
which data are collected. That is, if data are collected from
sanpl es upon which there are many influences, or variables, then
it is logical to use a statistical nmethod that is designed to
take those variables into account sinultaneously (Thonpson,
1994).

Because nmultivariate nethods are designed for nmultiple
out cone variables, multivariate nmethods require only one omi bus
test to determne if any differences exist. This is in contrast
to univariate methods, which require many tests, thus increasing
the likelihood of making erroneous decisions. For this reason
al one, nmultivariate nethods should be used when nultiple outcone

vari abl es are of concern.
Sunmmar y

Al though many researchers are famliar with "testw se"
al pha, "experinentwi se" Type | error rates are also inportant,

and nust be considered in many research situations. Testing
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mul tiple hypotheses with a single sanple of data can radically
inflate the "experimentw se" Type | error rate.

The present paper has explained how this inflation can be
avoided in various research situations. First, it was explained
that ANOVA post hoc tests inplicitly incorporate a hidden anal og
of the "Bonferroni correction® to avoid Type | error rate
inflation. Second, it was noted that nultivariate statistics are
frequently enployed by researchers to control "experinentw se"
errors that would otherw se occur by conducting several ANOVA' s

or regression analyses with a single sanple of data.
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Table 1

Experimentwi se Error Inflation Rates

aTtw Tests agw
1-(1-.01) * 1 =
1- ( 0.99 ) ** 1 =
1 - 0. 99 = 0.01
1-(1- .001) ** 10 = 0.009955
1-(1- .001) ** 20 = 0.019811
1-(1- .001) ** 30 = 0.029569
1-(1- .001) ** 40 = 0.039230
1-(1- .001) ** 50 = 0.048794
1-(1- .01) * 10 = 0.0561792
1-(1-.01) * 20 = 0.1820931
1-(1- .01) * 30 = 0.2602996
1-(1-.01) * 40 = 0.3310282
1-(1- .01) * 50 = 0.3949939
1-(1- .05) * 10 = 0.401263
1-(1- .05) * 20 = 0.641514
1-(1- .05) * 30 = 0.785361
1-(1- .05) * 40 = 0.871488
1-(1- .05) * 50 = 0.923055
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Tabl e 2

Al'l Possible Famlies of Qutcones

for a Fair Coin Flipped Three Tines

Flip #

1 2 3
1. T: T: T
2. H: T: T | p of 1 or nore Hs (TWerror anal og)
3. T: H: T | in set of 3 Flips = 7/8 = 87.5%
4. T: T: H |
5. H: H: T | or
6. H: T: H | where TWerror analog = .50,
7. T: H: H | EWp=1-(1- 53
8. H: H: H _ | =1- (53

=1- .125 = .875

p of H on

each Flip 50% 50% 50%
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Tabl e 3

Experi nentwi se Error Rate Wthout and Wth

The Application of the Bonferroni Correction

Nunber of 1-(1- ampwk =  agw
Hypot heses
No Bonferroni Correction
10 1-(1-.0510 = . 40126
50 1-(1-.055 = . 92306
100 1- ( 1- .05)100 = . 99408
Bonferroni Correction
10 .05/ 10 =. 00500 . 04889
50 .05/50 =.00100 . 04879
100 . 05/ 100=. 00050 . 04878

Note. Al original atwfor equations in
Table 3 are at the .05 |evel.

17
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Li st of Sinple and Conpl ex Contrasts
for One-way k=3 and k=4 ANOVA

Desi gn Contrasts

k=3 | evel s

Complex 3 + 3

Sinpl e
1
1

2

Uni quel y conpl ex

VS
VS
VS

2
3
3

1
2
3

k=4 | evel s

Sinple [4

1 wvs
1 vs
1 wvs
2 VS
2 Vs
3

Uni quel y conpl ex

VS
VS
VS

(4 -1)] /| 2

ArhowphbownN

VS
VS
VS
VS
VS
VS

2
1
1
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, 3
, 3
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1,
1,
2,
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VS
VS
VS
VS
VS
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N
1]
w

2 =6
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